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Abstract. We show that the potential q is uniquely determined by the spectrum, 
and boundary values of the normal derivatives of the eigenfunctions of the 
Schr6dinger operator - A  + q with Dirichlet boundary conditions on a 
bounded domain ~ in E". This and related results can be viewed as a direct 
generalization of the theorem in the title, which states that the spectrum and 
the norming constants determine the potential in the one dimensional case. 

1. Introduction 

Let q(x) be a real-valued potential in L ~ [0, 1] and let y(x, #) solve the initial value 
problem 

- y " + q y = / ~ y  for x~(O, 1), 

y(0, ~) = O, 

y'(0, #) = 1. 

Define the sequence (/h(q)}T= i of Dirichlet eigenvalues by the condition 

y0 ,  ~ )  = 0 

and define the norming constants cl by 

1 

ci(q) = S yZ(x, #i)dx. 
0 

A well known result of Borg [B] and Levinson [L] is 

Theorem 1.1. Suppose that qa,q2, ~L~( 0, 1), are real-valued and that, for all i 

#,(ql) = #i(q2) 
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and 

then 

ci(ql) = ci(q2); 

ql = q2. 
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It is possible to paraphrase Theorem 1.1 by 

Corollary 1.2. Suppose that ql,  q2 eL°~ ( O, 1), are real-valued and that, for all i 

#*(ql) = #i(q2), and 
y'(1, #i(q~ ); ql) = y'(1, #i(q2); q2), 

then 
ql = q2" 

Proof. Integrating the identity 

yOy' gy ) '  
-O--~ O# y' = _ y2, 

and setting # = #i yields the well known formula 

c~ = Sy2(x,#i)dx = (1, #i)y'(1, #i ). 
0 

As a function of #, y(1, #) is entire and of order 1/2 so that 

Y(I'#) = -ffI1 (1  -- ~ )  " i 

We may conclude from our hypothesis then that 

y(1, #; qx) = y(1, #; q2), 

and therefore that 

~(1,#~;ql) Oy = ~ ( 1 ,  #/; q2), 

and finally from (1.1), that 

(1.1) 

ci(ql) = ci(q2), 

SO that the corollary follows from Theorem 1.1 • 

Now, Corollary 1.2 has a direct generalization to higher dimensions; let ~2 be 
a bounded domain in ~n with smooth boundary and let q(x)eL ~ (~). Let {#i(q) } ~= 1 
denote the eigenvalues of 

- Au + qu = #u in 

uloa = 0, (1.2) 
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and  let {qh(x) } ~o= ~ be a corresponding complete  set of  o r t h o n o r m a l  eigenfunctions 1, 
then we have 

Theorem 1.3. Let ql,q2eC°°([2) be real-valued and suppose that, for each i 

//i(ql) =/zi(q2) 

and 

then 

~-~(x;q~)= ~-(x;q2 ) for all xeOl2x; (1.3) 

ql(x)=q2(x ) for  aU xel2 .  

We m a y  also consider different bounda ry  conditions. 
I f  {2~(q)}i°°_-i denote  the eigenvalues and {~(x;q)}?=~ 

or thonorma l  eigenfunctions of  

0u 
- A u + q u = 2 u ,  ~ v  + ~ u l m =  0, (1.4) 

where a(x) is a fixed smooth  real-valued function on ~O, we have 

Theorem 1.4. Let ql, qzeC®(if2) be real-valued and suppose that, for each i, 

2~(ql) = 2i(qz), 

~p~(x;ql ) = ~ ( x ; q 2 )  for all xe~3121; (1.5) 

then 

a complete  set of  

ql(x)=q2(x) for all x e O .  

The  bulk of the paper  is devoted to the p roof  of  Theorems  1.3 and 1.4; to this 
end we shall m a k e  use of the Dirichlet  to N e u m a n n  map,  which we define as 
follows: suppose that  zero is not  an eigenvalue of (1.2) and let u solve 

- -  A u  + q u  = 0 in f2, (1.6) 

u r~ = L (1.7) 

Aqf  = 0~vU oa" (1.8) 

we define 

l To each eigenvalue #~ we should properly associate not an eigenfunction but an eigenspace V i c L 2 ($2); 
ff ¢peV/, then (peCl(~), hence W/= {f l f  = (O(P/C%)loa:q)e|~} is a subspace of Lz((3~'Q), equipped with 
the inner product (#q~/0v I~a, O$/OVlea) = ( ~p, $ )L2(ar Condition (1.3) should act ually read 

W,(ql) = vc,(q2) 

as inner product spaces, and (1.5) should read similarly. 
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If zero is not an eigenvalue of (1.4), let u solve (1.6) and replace (1.7) with 

0u 
8--v + °~uJ°a = g 

to define 
Rqg = u[a n. (1.9) 

Although Rq depends on e(x)--which is known and fixed throughout--we do not 
indicate the dependence explicitly. If we let 2~C we may replace q in (1.6) with 
q - 2 and consider A~_z and Rq_a as functions of 2; we note that Aq_a and Rq_a 
are meromorphic operator-valued functions of 2 (with poles exactly on the spectrum 
of the associated Schr6dinger operators). We shall obtain both Theorem 1.3 and 
Theorem 1.4 as corollaries to 

Theorem 1.5. Let ql, q2 ~L~(K2) and suppose that, as meromorphic functions of 2eC, 
either 

Rq~_~ = Rq~_~, (1.10) 
o r  

then 
Aq1-4 = Aq2- z, (1.11) 

q l  ~ q2" 

To see, formally, the connection between Theorem 1.4 and Theorem 1.5, let 
G(x, y, 2) be the Green's function for - A  + q -  2 with the boundary conditions 
(1.4); then the solution to 

0u 
- Au + (q - 2)u = 0, ~ + o~Uloa = g (1.12) 

is given by 

u(x) = ~ G(x, y, 2)g(y)dS(y) for x in O, 
Of 2 

while G is given by the eigenfunction expansion 

G(x,y ,2)= ~ ~h(x)q/i(Y) 

so that, if we let x approach the 0 ~  

Rq-z(g) = ,  ~= 1 ~/'(x) I 0a 2~ ~ 2 ~ h ( y ) g ( y ) d s ( y ) ' o a  

which expresses R~_ ~ in terms of 2i and ~/~ J0a thus (formally) proving Theorem 1.4. 
The last theorem we state is a sharpening of Theorem 1.5 in dimensions n > 3. 

Theorem 1.6. Let ql,q2~L°°(~2), n >  3, and suppose that 2 o is not a Diriehlet 
eioenvalue of  q 1 or q2. I f  

aq1-2.0 ~ Aq2- ~.o~ 
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then 

ql = q2. 

For smooth potentials Theorem 1.6 is a direct consequence of a theorem in 
[S-U-II]; we include a somewhat simpler proof here, however. We also note that 
Theorem 1.6 is known to be true in dimension n = 2, provided that ql and q2 
are sufficiently close to constants (see [S-U, I]). 

The paper is organized into three sections; in Sect. 2 we prove Theorems 1.5 
and 1.6, and in Sect. 3 we use Theorem 1.5 to prove Theorems 1.3 and 1.4. 

2. P r o o f  o f  T h e o r e m s  1.5 and 1.6 

We begin this section by constructing special solutions to (1.6) and (1.12), which 
shall be used to prove Theorems 1.5 and 1.6. We shall find these solutions by 
solving an equation in R"; in order to do this, we shall extend the potential q(x) 
to be zero outside the domain £2. We shall make use of the norm 

II ~ IILg = II(1 + Ixl)~¢ ILL2, 
and the seminorm 

We shall need solutions to 

of the form 

where 

and satisfies 

/ 1 \U2  

- -  A u  + qu - -  2u = 0 (2.1) 

u = e ik'x + ~, (2.2) 

k.k = 2; k~R", (2.3) 

O , V ~ L 2 ;  a < - ½ ,  (2.4) 

-- A ~  + q~  -- ).~ = -- qeik'x; (2.5) 

in addition, ~k is a 2-outgoing solution to (2.5); that is 

-~-~k - i v / ~ b  = O. (2.6) 

We summarize in a lemma. 

L e m m a  2.1. For  6 < - ½, there exis ts  ~(6) > 0 such that i f  

H q(x)(a + lxl)-2°Ltz ~ < e(6)x/~,  (2.7) 

there exists a unique solution u to (2.1) of the form (2.2) such that ~ satisfies (2.4) 
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and (2.6). In addition 
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c(~, 6) 

We shall also need other special solutions to 

-Au+qu=O in N" 

of the form 

where 

and ~k satisfies 

u = e¢'~(1 + ~k), 

(.~=0; ~eC", 

OeLJ; - 1 < 6 < 0 ,  

(2.8) 

(2.9) 

(2.1o) 

(2.11) 

(2.12) 

(2.13) 

Define 

- A v + q 2 v - 2 v = O  in g2, 

co = ~ v for xff-Q 

( ul for x e ~ " \ O .  

As a consequence of (2.16), o) and (&o/Ov) are continuous across ~12; therefore, 
co solves (2.1) in ~'. co has the appropriate asymptotics at infinity ((2.4) and (2.6)) 

Proof. Let v solve 

-- A~k- 2~.V0 + q~k = - q .  

We summarize with 

Lemma 2.2. For -- 1 < 6 < O, there exists e(6) > 0 such that if 

tt(1 + Ixl)q(x)t l :  < e(6)t¢l, (2.14) 

there exists a unique solution to (2.9) of the form (2.10) with (2.12). In addition, 

II O 11LN < c(e, 6) = Iffl IIqIILL1; - 1 < 6 < 0 .  (2.15) 

We shall sketch the proofs to Lemmas 2.1 and 2.2 in an appendix; see also 
[ L - N ]  for other estimates, which allow more singular potentials. We shall also need 

Lemma 2.3. Let ql,q2~L~(g2), extended to be zero outside 12, satisfy (2.7) 
(respectively (2.14)) and suppose that 

Aql_ a = Aq2_ ~ (respectively Aq, = Aq2). (2.16) 

If ul, uz are the unique solutions to (2.1) (respectively (2.9)) of the form (2.2) 
(respectively (2.10)), then 

u l = u 2  in N ' \ O .  
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because u~ does; so that we may conclude, according to the uniqueness statement 
in Lemma 2.1, that 09 = u2. Thus u2 = u~ in ~ n \ o .  

The other case is similar. • 

Proof of Theorem 1.5. Let m~R ~ be fixed and let 

k'= ½(m +/);  m.l=O, 
k = ½(m - l). 

Let ui be as in (2.2) with qi(i = 1,2) in place of q (choose ti1 so large that (2.7) 
holds): 

. i~{~ui ) 

where v is the outward pointing unit normal and dS is the euclidean surface measure: 

= ~ eik~(Aq,_~ -- ik'v)uidS. 
oo 

Now, according to Lemma 2.3, 

ul I~,~ = uzt~o 

and, according to (1.11) 

so that we may conclude 

Aq~_ x(u 1 [~a) = Aqz_ x(u2 I~a), 

~ ei~Xql u~ = ~ eik'xq2u 2. 

If we now let Ill, and hence 2, go to infinity and use (2.8), we obtain 

eim'Xql = ~ eim'Xq2 • 

As m~R n was arbitrary, we conclude that 

ql = q2" 

To complete the proof of the theorem, we note that (1.10) implies (1.11), as 

Aq_ ~ = g~J~ - ~(x)I. • 

Proof of Theorem 1.6. For fixed m ~ " ,  we choose 

~=½(k +i(m+e)),  ( = ½ ( - k  + i (m-e ) ) ,  

where 

k . e = k . m = e ' m = O ,  [ k l = t m + e L = l m - e t ,  

and compute as before 

~e~~qiui=Sae~=X(~-~'vui)dS. 
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We conclude that  
~ ~ 

S e~Xql ul = ~ e~'Xq2u2 , 
D g2 

and, letting [ el, and hence I k l = I m + el, tend to infinity, we conclude from (2.15) that  

S eim'xql = f eim'x~ J ~/2, 

and hence that  q~ = q2- • 

3. P r o o f  o f  Theorems 1.3 and 1.4 

To  make  the formal argument  following the statement of  Theorem 1.5 precise, we 
shall need two lemmas. 

Lemma 3.1. For m sufficiently large and f s C ~ ( ~ ) ,  

~-~ (Rq_x(f))= I r(x,y)f(y)dS(y), (3.1) 

~ ( A , _ ~ ( f ) ) =  f e(x,y)f(y)dS(y), (3.2) 
0a 

where r(x, y) and e(x, y) are the continuous functions in f2 x ~ given by 

Proof. Let ~o solve 

It is easy to check that  

and that  for xe.Q 

r(x,y)= ~ ~bi(x)~i(Y) 
= 1 (As - 2 )"  + 1 m ! ,  

- %'%' 
e(x, y) - ~= 1 (,ui - 2) m + 1 m! 

( -  A + q -  ~,)m+ l ¢~=O, 

( -  A + q - ,~)%~[~ = m! f ,  

(--d+q--2)~a~[~a=O; O<--_j<m. 

(Aq_~f) 8v aa 

so that, for x , e & O  

8 8 d m 

x~x, x O~ y k'* ) 

(3.3) 

(3.4) 
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q~(x)@~(y) 
G(x,y,2) = 

i=1 ~ i - 4  

Equations (3.2) and (3.4) will follow as soon as we establish the continuity in £2 x £2 of 

(-d 
e ( x ' Y ) = - \ d X J  Ov~ 

To see this, note that  the ~o~ C ~ (~) and satisfy the straightforward energy estimates 

II ~ [I n-to) < c~(q, £2)1#~1 *~ + cz(q,£2), 

where c~ and c2 depend on q and its derivatives and £2. A large enough choice of 
m will therefore assure uniform convergence of (3.4) in £2 x £2. This proves (3.2) 
and (3.4); (3.1) and (3.3) are analogous and therefore omitted. [] 

Lemma 3.2. Let f eC°°(~9£2); qa ,  q2E C C °( $~ ) ;  and 0 < t < ½; then 

lim ti (Rq~ _ z - Rq~_ i)(f)ll, 't0~) = 0, (3.5) 
.~,--* - -  o 0  

lim 1[ (Aq, _ ~ - Aq~_ i)(f)II, 't0a) = 0. (3.6) 
; ¢ ~ -  oo 

Proof. We shall prove (3.6); (3.5) is similar. Let ui(i = 1, 2) solve 

( - A + q i - 2 ) u i = O ,  uiloa= f. 

Now, e9 = ul - u2 solves 

( - -  A + q l  - -  ,,],)09 = (q2  - -  q l ) U z ,  

and therefore satisfies the energy estimate 

C(£2) sup [qi - q21 II U2 [[L2(£2) 
II c°'ln~(a)< (~a ,  ql _ ~.,) i-s~2 

It follows from (3.7) that  
C(£2) sup I q2 - 21 II f ]l nl/2(0o) 

i luzt lL2ta)  < = x~tt inflq2 -2[ 
x E  . Q  

For  0 < t < ½, combining (3.8) and (3.9) yields 

0co 
'l(Aql- i -  A~2-~)f l[n'toa) = l[~v laa[In taa) 

< C(£2)It o~ It H,+~.tat 

< 

ogba= O, 

(3.7) 

C(£2) sup[ q2 - 21suplql - q21 II f [lnl/zt0a) 
x~O x~g2 

( ~ l q i  V"-2')/4)/  ", ' 

; 2 < 20. (3.9) 

0 _ < s t  2, 4 < 2 0 .  (3.8) 
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and the term on the right approaches zero as h approaches minus infinity. 

Proof of Theorems 1.3 and 1.4. Suppose that the hypothesis of Theorem 1.3 holds. 
Lemma 3.1 implies that Aq, _~ - Aq~_~ is a polynomial in 2, and Lemma 3.2 implies 
that the polynomial is zero. Hence Aq,_ x = Aq~_ ~ and we may invoke Theorem 1.5. 
The proof of Theorem 1.4 is similar. • 

A p p e n d i x  

In this appendix we sketch a proof of Lemmas 2.1 and2.2. Lemma 2.1 appears to 
be a well known consequence of standard arguments from scattering theory (see 
[A-HI  or [A]), so that we shall give only a brief sketch of its proof. 

In fact, Lemma 2.1 is easily seen to be a regular perturbation of 

Lemma A.1. Let f~L2~, 5 < - ½ ,  and h > ~ > O, then there exists a unique L 2 
h-outgoing solution to 

and 

Sketch of proof. Define 

where, by definition, 

- d ~ b - h ~ b = f  in R" 

ll~& llLg ~ I I f l I L L -  (A.1) 

~7_ i~t2 _ h - i0' 

1 1 
= lim 

I ~ 1 2  - h - i0  ~0 ÷ I ~ 1 2  - , l  - i~  

The estimate (A.1) follows from Theorem 5.1 of [A-HI,  with a little care taken 
to keep track of the constant depending on h. (Note that the I[ lib used in [A-HI  
is strictly weaker than ff ItL2 for 5 < - ½ ) .  The fact that ~b is the h-outgoing 

solution follows from Theorem 7.4 of [A-HI,  with Q(x, D) taken to be ~/dr - ix/~2. 

Lemma 2.2 is easily seen to be a regular perturbation of the following which 
is Proposition 2.1 of [S-U, II]: 

Lemma A.2. Suppose that ~.~ = O, I~1 > n > 0, - 1 < 6 < o, andf~L2+l; then there 
exists a unique og~L 2 solving 

zl  o~ + ( . W o  = f ;  

moreover, 
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